Первый закон термодинамики Основы термодинамики

Темы раздела     >>
Первый закон термодинамики

      Если система обменивается теплом с окружающими телами и совершает работу (положительную или отрицательрую), то изменяется состояние системы, т.е. изменяются её макроскопические параметры. Так как внутренняя энергия U однозначно определяется макроскопическими параметрами, то отсюда следует, что процессы теплообмена и совершения работы сопровождаются изменением внутренней энергии системы.

      Первый закон термодинамики явлвется обобщением закона сохранения и превращения энергии для термодинамической системы. Он формулируется следующим образом:

     Изменение внутренней энергии неизолированной термодинамической системы равно разности между количеством теплоты,переданной системе, и работой, совершенной системой над внешними телами.

ΔU = Q – A

     Соотношение, выражающее первый закон термодинамики, часто записывают в другой форме:

     Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы над внешними телами.

Q = ΔU + A

     Первый закон термодинамики является обобщением опытных фактов. Согласно этому закону, энергия не может быть создана или уничтожена; она передается от одной системы к другой и превращается из одной формы в другую. Важным следствием первого закона термодинамики является утверждение о невозможности создания машины, способной совершать полезную работу без потребления энергии извне и без каких-либо изменений внутри самой машины. Такая гипотетическая машина получила название вечного двигателя (perpetuum mobile) первого рода. Многочисленные попытки создать такую машину неизменно заканчивались провалом. Любая машина может совершать положительную работу A над внешними телами только за счет получения некоторого количества теплоты от окружающих тел или уменьшения своей внутренней энергии.

Применим первый закон термодинамики к изопроцессам в газах:

      В изохорном процессе (V = const) газ работы не совершает, A = 0. Следовательно,

Q = ΔU = U(T2) – U(T1)

      Здесь U(T1) и U(T2) – внутренние энергии газа в начальном и конечном состояниях. Внутренняя энергия идеального газа зависит только от температуры (закон Джоуля). При изохорном нагревании тепло поглощается газом (Q > 0), и его внутренняя энергия увеличивается. При охлаждении тепло отдается внешним телам (Q < 0).

      В изобарном процессе (p = const) работа, совершаемая газом, выражается соотношением

A = p(V2 – V1) = pΔV

Первый закон термодинамики для изобарного процесса дает:

Q = U(T2) – U(T1) + p(V2 – V1) = ΔU + pΔV

      При изобарном расширении Q > 0 – тепло поглощается газом, и газ совершает положительную работу. При изобарном сжатии Q < 0 – тепло отдается внешним телам. В этом случае A < 0. Температура газа при изобарном сжатии уменьшается, T2 < T1; внутренняя энергия убывает, ΔU < 0.

      В изотермическом процессе температура газа не изменяется, следовательно, не изменяется и внутренняя энергия газа, ΔU = 0. Первый закон термодинамики для изотермического процесса выражается соотношением

Q = A

      Количество теплоты Q, полученной газом в процессе изотермического расширения, превращается в работу над внешними телами. При изотермическом сжатии работа внешних сил, произведенная над газом, превращается в тепло, которое передается окружающим телам.

      Наряду с изохорным, изобарным и изотермическим процессами в термодинамике часто рассматриваются процессы, протекающие в отсутствие теплообмена с окружающими телами. Сосуды с теплонепроницаемыми стенками называются адиабатическими оболочками , а процессы расширения или сжатия газа в таких сосудах называются адиабатическими. В адиабатическом процессе Q = 0; поэтому первый закон термодинамики принимает вид

A = –ΔU,

т. е. газ совершает работу за счет убыли его внутренней энергии.

      В термодинамике выводится уравнение адиабатического процесса для идеального газа. Это уравнение имеет вид

pVγ = const

      Это соотношение называют уравнением Пуассона . Здесь γ = Cp / CV – показатель адиабаты, Cp и CV – теплоемкости газа в процессах с постоянным давлением и с постоянным объемом. Для одноатомного газа для двухатомного для многоатомного Работа газа в адиабатическом процессе просто выражается через температуры T1 и T2 начального и конечного состояний:

A = CV(T2 – T1)

      Адиабатический процесс также можно отнести к изопроцессам. Он (так же, как и другие изопроцессы) является процессом квазистатическим. Все промежуточные состояния газа в этом процессе близки к состояниям термодинамического равновесия










 
Перейти

 
Друзья сайта

 

УВК г.Курахово 2009 (создатель сайта - Панжиев Т. и Семенкова А.)
Rambler's Top100